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Governing equations for two-dimensional inviscid free-surface flows with constant vorticity over arbitrary
nonuniform bottom profile are presented in exact and compact form using conformal variables. An efficient and
very accurate numerical method for this problem is developed.
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Most theories for surface water waves have been devel-
oped under assumption of irrotational flows �see, for ex-
ample, Refs. �1–3�, and references therein�. The reason is
that irrotational incompressible flows are completely deter-
mined by the boundary distribution of the velocity potential
through solution of the Laplace equation, and this fact effec-
tively reduces spatial dimensionality of the problem. How-
ever, in many real situations waves propagate on shear cur-
rents, and over nonuniform depth. Interaction between waves
and currents is important in many aspects, for example, as a
mechanism of giant wave formation �4–6�. The fully nonlin-
ear problem of vortical flows under free surface is very com-
plicated. Various simplifications are assumed in theoretical
studies, as weak nonlinearity, mild slope, long wavelength,
and so on �see, for examples, Refs. �7–12��. The only possi-
bility for nonpotential flows, when dimensionality is re-
duced, is the two-dimensional �2D� problem with constant
vorticity, since in this case all perturbations are irrotational.
In particular, relatively long solitary waves in water of finite
uniform depth with constant vorticity were calculated ana-
lytically �13,14�. There are also fully nonlinear numerical
results for steady flows obtained by a boundary integral
method �see Refs. �15–17�, and references therein�. At the
same time, unsteady rotational waves have not been exten-
sively simulated. The present work is intended to fill this
gap. Here for the first time an exact and compact formulation
of the fully nonlinear problem of waves with constant vor-
ticity is presented in terms of so-called conformal variables.
The conformal variables were introduced earlier and success-
fully used to describe purely potential flows on a constant
depth or on infinitely deep water �18–22�. Later, the descrip-
tion has been generalized by the present author to the case of
potential flows over arbitrary nonuniform and time-
dependent bottom profile �23,24�. One of the main advan-
tages of equations in conformal variables is an easy numeri-
cal implementation with fast Fourier transform �FFT�
subroutines. In this work, after derivation of exact evolution-
ary equations, some illustrative numerical results will be pre-
sented. Here, for simplicity, a nonuniform bottom profile
does not depend on time, though a generalization to nonstatic
bottom is straightforward.

Derivation of exact equations. In what follows, style and
notations will be the same as in Ref. �24�. We consider here
a 2D incompressible inviscid nonstationary flow in the �x ,y�

plane, bounded by a given bottom profile from below and by
an unknown free surface from above. The flow is rotational,
with a constant vorticity field, �xV�y�−�yV�x�=−�=const. The
velocity field thus can be represented as follows, V= ��y
+�x , �y�, where the potential ��x ,y , t� satisfies the Laplace
equation �xx+�yy =0. Let us also introduce a harmonically
conjugate function ��x ,y , t�, �x=�y, �y =−�x. Then it is easy
to check that two components of the vector Euler equation
are equivalent to a single scalar equation, analogous to the
Bernoulli equation,

�t − �� + �y�x + ��x
2 + �y

2�/2 + gy + p/�� = const, �1�

where g is the gravity acceleration, �� is a constant density of
the fluid, and p�x ,y , t� is the pressure. It is Eq. �1� that makes
possible reduction of dimensionality of the problem, in the
same manner as for purely potential flows.

An important point is that complex combination �̃�z , t�
=��x ,y , t�+ i��x ,y , t� is an analytic function of the complex
argument z=x+ iy. Analyticity is preserved under conformal
coordinate transforms z=z�w , t�, where w=u+ iv is a new
complex variable. We choose an analytic function z�w , t� in
such a manner that w=u at the bottom and w=u+ i at the free
surface. Shape of the surface will be given in a parametric
form,

X�s��u,t� + iY�s��u,t� � Z�s��u,t� = z�u + i,t� . �2�

The bottom profile will be determined by

X�b��u,t� + iY�b��u,t� � Z�b��u,t� = z�u,t� . �3�

Thus, we have an analytic function ��w , t�= �̃�z�w , t� , t� de-
fined in the stripe 0�v�1 in the �u ,v� plane. Let us desig-
nate boundary values of this function as written below,

��u + i,t� � ��s��u,t�, ��u,t� � ��b��u,t� . �4�

Since ��s��u , t� and ��b��u , t� are values of the same analytic
function at points u and u+ i, they are related to each other
by a linear transform �see �24��,

��s��u,t� = e−k̂��b��u,t� , �5�

with e−k̂�exp�i�̂u�. That means �k
�s��t�=e−k�k

�b��t� for the
corresponding Fourier images.

The velocity components are determined by the following
relations:*ruban@itp.ac.ru
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V�x� − iV�y� = �y + �x − i�y

= � Im z + d�̃/dz = � Im z�w,t�

+ ���w,t�/z��w,t� . �6�

Now we are going to write equations of motion in the
conformal variables. First, we have two kinematic conditions
which in our case take the form

− Im�Zt
�s�Z̄u

�s�� = �Im ��s� + ��/2��Im Z�s��2�u, �7�

0 = �Im ��b� + ��/2��Im Z�b��2�u, �8�

where Z̄ denotes complex conjugate value, and the subscripts
denote the corresponding partial derivatives. At free surface
the pressure is constant �we neglect here surface tension 	,
otherwise p�s�=	
+const, where 
 is the surface curvature�.
Therefore, from Eq. �1� we have the dynamic boundary con-
dition in conformal variables,

Re��t
�s� − �u

�s�Zt
�s�/Zu

�s�� + ��u
�s�/Zu

�s��2/2 + g Im Z�s� − � Im ��s�

+ � Im Z�s� Re��u
�s�/Zu

�s�� = 0. �9�

Taking into account Eq. �8�, it is convenient to represent
��b��u , t� in the form

��b� = Ŝ� − i��/2��1 − iR̂��Y�b��2, �10�

where ��u , t� is some unknown real function, and the linear

operators Ŝ and R̂ are diagonal in Fourier representation, Sk

=1 /cosh�k�, Rk= i tanh�k�. It is essential that when Ŝ or R̂
acts on a purely real function, the result is also real. We will

also need the operator Tk=−i coth�k�=Rk
−1. Since e−k̂Ŝ= �1

+ iR̂� and e−k̂�1− iR̂�= Ŝ, we have from Eqs. �5� and �10� the
following formula for ��s��u , t�:

��s� = �1 + iR̂�� − i��/2�Ŝ�Y�b��2. �11�

Now we should take into account that the function z�w , t� can
be represented as a composition of two functions �see
�23,24��, that is z�w , t�=Z���w , t��, where a known analytic
function Z���=X���+ iY��� determines bottom shape. The
conformal mapping Z��� does not have any singularities
within a sufficiently wide horizontal stripe above the real
axis in the � plane. An intermediate analytic function ��w , t�
takes real values at the real axis, and therefore

��w,t� =� ak�t�
cosh�k�

eikw dk

2
, a−k = āk, �12�

where ak�t� is Fourier transform of a real function a�u , t�. On

the bottom, ��u , t�= Ŝa�u , t�, therefore

Z�b��u,t� = Z�Ŝa�u,t�� . �13�

At the free surface we have relations

��u + i,t� � ��u,t� = �1 + iR̂�a�u,t� , �14�

and Z�s�=Z���, Zu
�s�=Z�����u, Zt

�s�=Z�����t.

Thus, we have in our system two unknown real functions,
��u , t� and a�u , t�. All of the other quantities are expressed
through these two. Our purpose now is to derive equations
determining time derivatives �t and at. To do this, we divide
Eq. �7� by �Zu

�s��2 and obtain that Im��t /�u�=−Q, where

Q �
„R̂� + ��/2���Im Z����2 − Ŝ�Im Z�Ŝa��2	…u

�Z�����u�2
. �15�

Since �t /�u= ��t�w , t� /�w�w , t��w=u+i, there exists a relation be-

tween the real and imaginary parts: Im��t /�u�= R̂ Re��t /�u�,
so Im��t /�u�=−Q means �t=−�u�T̂+ i�Q and it gives us the
equation determining at,

at = − Re��u�T̂ + i�Q� . �16�

After that, Eqs. �9� and �11� allow us to express �t,

�t = − Re��u
�s��T̂ + i�Q� − ��u

�s�/Zu
�s��2/2 − g Im Z�s�

+ � Im ��s� − � Im Z�s� Re��u
�s�/Zu

�s�� . �17�

Now, exact and explicit evolutionary equations have been
derived. In the following we explain how one can numeri-
cally simulate them with a high accuracy.

Numerical method and example. Let us consider the case
when a bottom profile is periodic on x. Obviously, there exist
solutions with velocity field and surface elevation having the
same spatial period L. Without loss of generality, the poten-
tial ��x ,y , t� can be assumed periodic �the part of � that is
proportional to x and corresponds to a constant horizontal
velocity, can be excluded by a redefinition of y zero level�.
Making a proper choice for the length and time scales, we
may write g=1, and Z��+2�=2+Z���. Direct substitution
into Eqs. �16� and �17� shows the solutions are 2 periodic
on the variable �=u��t�, where a real function ��t� depends
on time in a nontrivial manner in order to cancel nonperiodic
terms in Eqs. �16� and �17�. The nonperiodic terms take place

because the operator T̂ is singular at small k, and its action

on a constant function Q0 is nonperiodic: T̂Q0=Q0u �see
Refs. �23,24��. So, we can write for rescaled dimensionless
quantities

a��,t� = � + 

m=−�

+�

�m�t�exp�im�� , �18�

���,t� = � + i��t� + 

m=−�

+�
2�m�t�exp�im��
1 + exp�2m��t��

, �19�

���,t� = 

m=−�

+�

�m�t�exp�im�� , �20�

where �m�t� and �m�t� are Fourier coefficients of 2-periodic
real functions ��� , t� and ��� , t�. As a result, in variables
�� , t� equations for �t and �t look similar to Eqs. �16� and
�17�, but all of the u derivatives should be replaced by �

derivatives, and operators R̂, Ŝ, and T̂ should be everywhere

replaced by new operators R̂�, Ŝ�, and T̂�, respectively,
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�t = − Re����T̂� + i�Q� , �21�

�t = − Re����T̂� + i�Q� −
����2

2�Z�������2
− g Im Z���

+ � Im � − � Im Z��� Re� ��

Z������
� , �22�

where �=�+ i�+ �1+ iR̂���, and

� = �1 + iR̂��� − i��/2�Ŝ�Y2�� + Ŝ��� , �23�

Q =
�R̂�� + ��/2��Y2��� − Ŝ�Y2�� + Ŝ����	�

�Z�������2
. �24�

These new operators are diagonal in the discrete Fourier rep-
resentation: R��m�= i tanh��m�, S��m�=1 /cosh��m�, and
T��m�=−i coth��m� for m�0, T��0�=0. The system of
equations is closed by the following condition for �̇�t�,
which ensures cancellation of the nonperiodic terms in Eqs.
�16� and �17�,

�̇�t� = −
1

2
�

0

2

Q���d� . �25�

The above system of equations has two apparent integrals
of motion, namely the area A occupied by fluid, A=A0
+Y���Re�Z�������d�, and the total energy E �kinetic energy
plus potential energy in the gravitational field�,

E = E0 +
�2

6
� Y3���Re�Z�������d�

+
�2

8
� Y2�� + Ŝ���R̂��Y2�� + Ŝ�����d�

+
�

2
� �Y2��� − Ŝ�Y2�� + Ŝ������d�

−
1

2
� �R̂���d� +

g

2
� Y2���Re�Z�������d� , �26�

where A0 and E0 are constant, and all of the integrals are in
the limits from 0 to 2.
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FIG. 1. Shape of the free surface at different time moments: �a�
t=0.00 s; �b� t=2.8 s; �c� t=5.6 s; �d� t=6.32 s.
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FIG. 3. Velocity distribution at the free surface for t=6.39 s.
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Equations �21�–�25� are easy for numerical simulation if
the function Z��� is given by a simple formula as it takes
place for many interesting bottom profiles. The numerical
method employed here is naturally based on the discrete
Fourier representation, since all of the linear operators in the
equations are efficiently computed with modern FFT subrou-
tines in m representation, while all of the nonlinear opera-
tions are simple in � representation. As primary dynamical
variables, the quantities ��t�, �m�t�, and �m�t� are taken, with
0�m�M �for negative m the relations �−m= �̄m and �−m

= �̄m are used�. After each step of a Runge-Kutta fourth-order
procedure, only spectral components with �m��Meff are
kept, where Meff��1 /4�N, M ��3 /8�N, and N=212¯19 be-
ing the sizes of arrays for the fast Fourier transform �during
computations, N is doubled several times as small-scale
structures develop�. As a result of the adaptive increasing of
N, the right-hand sides of Eqs. �21� and �22� can be com-
puted with nearly the same numerical error �0�N10−18 as it
is for the FFT subroutine using C-type double. Since the time
step is decreased as ��1 /N for the stability reasons, an error
for the free surface position at t�1 can be estimated as �
�N210−18. Practically, A and E are conserved up to 10 deci-
mal digits for most parts of the evolution. In a final stage, the
larger Nfinal is used, the later time moment is when the high
accuracy is lost.

Here an example is given which demonstrates potentiali-
ties of the method. Let the bottom profile be determined by
the formula Z���= iY0+B��− i�0�, where Y0=0.02, �0

=0.02, and

B�q� = q − i� ln��i sin q + �� + cos2 q��1 + ��−1/2� ,

with �=0.6 and �=0.02. At t=0 we set �=�0 and �
=0.05 tanh�15 sin��−���exp�−2�1−cos��−���	, where �

=0.5. In Fig. 1�a�, the bottom profile and the initial surface
shape are presented normalized to the spatial period L
=100 m and shifted appropriately in the vertical direction.
Dimensionless vorticity �=2.0 together with the parameter
Y0 give the rotational part of the horizontal velocity field
V�x�

����1.6�y+1� m /s. This corresponds to a backward flow
along the bottom in the deeper regions. We choose ��� ,0�
in such a way that at t=0 the normal component of the
total velocity field at the free surface is zero, ��� ,0�
=−�� /2�T̂��Y2���− Ŝ�Y2��+ Ŝ����. Some results of the
computation are presented in Fig. 1, where also a comparison
is made to the case �=0. The initial hump at the surface
decays into two oppositely propagating solitary waves hav-
ing different speeds and different profiles �crest of the right-
propagating wave is more sharp; however, a maximum cur-
vature is finite�. In this example the right-propagating wave
first meets the region of relatively shallow depth, where its
crest becomes more and more steep, and finally the wave
profile overturns, as it is seen in Fig. 2. Velocity distribution
along the overturning wave is shown in Fig. 3. Another in-
teresting phenomenon observed here is the wave blocking
near x�60 m, where an average horizontal flow velocity
��1.6 m /s for �=2.0� approaches speed of typical waves
vph��gh �h is the local depth�, and therefore waves cannot
enter the shallow region from the right. In different simula-
tions, for ��2.4, the blocking was so strong that wave
height near the point x=60 was comparable to the local
depth �not shown�. However, an extensive discussion of this
phenomenon is not possible in this Brief Report.
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